
The Game Pulse - Timing Game Events and
Music Events

Richard van Tol MA, Sander Huiberts PhD

HKU University of the Arts Utrecht
Lectorate Play Design and Lectorate Music Design

PO Box 2471, 1200CL Hilversum, NL

Abstract

The aim of this paper is to examine how to design nonlinear music
systems that allow for music events to coincide and correspond with
dynamically changing game events. We address the challenges of
connecting nonlinear music systems to gameplay and distinguish
three approaches for timing time music events and game events:
Trail, Sync and Lead. We explore these three approaches in the
design case study Gluddle versus The Supervision, a game created
by the authors. Our preliminary findings illustrate the benefits of
combining Trail, Sync and Lead, positively influencing the game
experience, but also the need for extra attention to gameplay balance
and technical implementation.

1. Introduction

Nonlinear music systems for games have evolved incredibly over the
past ten years. With sophisticated systems music designers try to
create music that adapts to gameplay, to smoothly blend scenes,
states and storylines. In contrast with traditional media such as film, a
game music designer generally does not know upfront exactly when to
time a particular music event. Therefore it can be rather challenging to
design a nonlinear music system that allows for music events, such as
musical transitions and progressions, to coincide and correspond with
dynamically changing game events [1].

In this paper we will examine which methods and approaches exist to
time nonlinear music and describe their benefits and disadvantages.
We will first look into the timing of music events and their function in
the game. We will then discuss three approaches of timing music
events in a nonlinear music system. Through a design case study
(see below) we explore the possibilities of these three approaches for
designers.

This paper is a practice-based exploration from a designer’s point-of-
view. We will use the game Gluddle versus The Supervision (2012) [2]
as a design case. This toy-like bouncy ball game has been fully
developed by ourselves. Gluddle was chosen as a design case study
because as its designers we had full access to the game’s code and
assets and therefore complete control over the game design and
music system, enabling easier exploration of the various design
parameters.

In the game, players control colourful bouncy ball creatures named
Gluddle. Their opponent is The Supervision, a mysterious spying
entity whose spherical robot eyes (nicknamed 'Bullseyes') try to rob
the Gluddle of their privacy by freezing their movement and taking
flashing snapshots. The goal of the game is to clear all Bullseye-
infested levels by launching and bumping Gluddle against the evil
Bullseyes afloat in the sky. A key mechanic is freezing Gluddle in mid-
air, thus creating paths and boundaries for succeeding Gluddle to
bounce upon. The game is developed in Unity and currently published
on the iOS and Android platforms.

Figure 1: a screenshot of Gluddle versus The Supervision. The
coloured spherical creatures are The Gluddle, the white globes with
the red Bullseyes are The Supervision (henceforth ‘Bullseyes’).

2. Event Timing in Games

2.1. Free-time timing versus quantised timing

Events in games are commonly triggered by either the player or by
timed functions [3]. Both are usually timed in 'free-time’, which means
these functions are executed the moment they are needed.

An alternative to triggering game events in free-time is 'quantised
timing'. When quantised timing is used to trigger game events, these
events are synchronised to a grid of specific time intervals. Such an
alternative allows for the triggering of events in coincidence with the
beat or pulse of the music.

Game repertoire offers many cases in which game events are
synchronised to the musical pulse. While most of these examples
include rhythm and music games, in which timing is an intrinsic part of
the gameplay [4], there exists a smaller repertoire of games without
such music- or rhythm-focused gameplay. Game event quantization is
found in for instance Beat Sneak Bandit (2012), Monkey Island 2
(1991) and Mushroom Men (2008).

2.2. Phases of Music Event Timing and their function

The timing of music events in relationship to game events gives music
designers the ability to create meaning and significance [5]. There are
multiple approaches to describe temporal relationships between
events, such as James F. Allen's interval-based temporal logic [6]
which distinguishes 13 base relations between two intervals (events
with a distinguished start, duration and end). For Gluddle's real time
music scheduling system we focus only on the relationships between
the initiations of game events and music events, and not on the
duration or end of these events. Based on this simplified perspective,
we would like to propose three key phases in music event timing:
Prelude, Perilude and Postlude.

Figure 2: Three moments of music event timing in games: Prelude,
Perilude and Postlude.

Prelude (literally meaning 'before play') describes the moment in
which music is used to indicate a game event is going to happen,
foreshadowing (the possibility of) the game event. Anticipating
upcoming game events may improve the player experience and
enhance flow in games [5]. 'Foreshadowing' is a technique that has a
rich tradition in film music [7] but it is one of the more difficult functions
to achieve in games due to their nonlinear nature [5,8]. Perilude
(literally meaning 'during play') describes the moment in which music
is used to accentuate the happening of the game event through
synchronization. Postlude (literally meaning 'after play') describes the
moment in which music is used to evaluate the happened event,
providing reflection and afterthought. Postlude can be seen as a short
moment of evaluation, emphasizing an event [5].

2.3. Event time scheduling challenges in nonlinear music
systems

Depending on the techniques that are used in nonlinear music
systems, the nonlinear music design challenges differ. In the case of
'horizontal re-sequencing' [9] - modifying the musical structure in real
time - the duration of music cells defines the response time [10], see
figure 3. This makes it more difficult to react in time compared to, for
instance, 'vertical reorchestration' - adding musical layers to an
already playing music cell [11]. In case of the latter technique, it is
more difficult to react to changing events with alternating chord
progressions.

Figure 3: The length of musical fragments compared to the response
time [10].

As Nispen et al [10] mention, the average response time of a music
system depends on the length of music fragments, so increasing the
duration of musical fragments increases the average response time of
the system. Common methods to overcome response time latency
(the result of waiting for a musical fragment to end) are abruptly
starting a new fragment or crossfading between the current and the
new fragment. While these methods have been used in games for
over 20 years and have proven to work in several contexts, these are
not apt for every music genre. Also, the player may ”become aware of
the system and what the outcome of the interaction will be, causing
annoyance, often making the player mute all sounds or end the game”
[10].

3. Three approaches to time nonlinear music systems

3.1. Connecting game events and music events

By designing Gluddle, we examined how to make a music system
respond appropriately to dynamic game events. When a particular
event occurs, the aim is to make the music system react accordingly
so that what is heard corresponds to what the player should
experience. There are multiple design approaches to establish a
temporal relationship between a game event and the corresponding
music event. Below, we will discuss their properties and their
possibilities.

3.2. Trail

The first approach, nicknamed Trail, is when the timing of a specified
game event conducts the response of the music system. The music
follows the game event in an 'As Soon As Possible' -manner, always
taking some time to respond depending on the remaining duration of
the currently playing musical fragment. In this approach, the music
changes when the appropriate musical timing is there, e.g. when the
musical cell has stopped playing, when an exit or fade point in the cell
is reached, or when the transition is accompanied by a stinger [8] that
masks the transition.

This technique is flexible and supports many music styles. A downside
is that it is always 'too late' in the sense that it is always subsequent to
the action in the game - the music can never foreshadow or predict
any action.

3.3. Sync

The second approach, named Sync, is the immediate triggering of
music events synced to the timing of game events. When an event
occurs, the change in music is triggered and executed immediately.
This kind of relation between events and music is also found in the
film scoring technique 'Mickey Mousing' where music is timed to or
sync with the visuals on screen [12, 13]. Nispen et al [10] argue that
although this immediate triggering of music in relation to action is
objectionable from a musical perspective and could possibly diminish
immersion, the technique seems widely accepted by players and is
recognised as part of the game music tradition.

A recent example of a non-rhythm game using Sync is Super Mario
Galaxy (2007), in which the tempo and pitch of the game's music is
synchronised to the velocity of a ball (with lead character Mario on
top) controlled by the player. In BeatBuddy (2013), the seemingly non-
diegetic soundtrack is actually made up of (diegetic) sounding objects
in the world, each cleverly adding a musical track in sync to create the
game's soundtrack. But some games go one step further. Platform
game Beat Sneak Bandit radically forces players to quantise their
input to the games' soundtrack. Not syncing their touches simply
results in a failure to interact with the game or even worse, in a
penalty. However, it is this twist that makes this game fun and
challenging.

Sync is a relatively easy way to time nonlinear music systems, but is
not easily applied to every part of the game. In the case of the first two
examples, many sounds related to the Event and Interface domains
[5] are still in free-time and are not synced to the beat of music. In
Beat Sneak Bandit these are synced to the beat of the music,
restricting the player's freedom to interact with the game.

3.4. Lead

The third approach consists of quantizing game events to the musical
pulse. In this approach, nicknamed Lead, the musical pulse conducts
the timing of game events. It is not a new technique. iMUSE
(Interactive MUsic Streaming Engine), a well-known interactive music
system developed in the early 1990s by LucasArts' composers
Michael Land and Peter McConnell, already allowed for synchronizing
music with the visual action in the game, and for transitions from one
musical theme to another, enabling nonlinear music in games. A
somewhat lesser known fact is its ability to quantise the timing of
game events to the timing of the music. For example, in Monkey
Island 2 - Le Chuck's Revenge, the system is used to slightly pause

visual animations so that they are in sync with the music [15]. Another
example is Mushroom Men (2008), which uses a combination of Sync
and Lead.

Music
Timing

Approach
Game Event <> Music

Trail
Game event

timing leads, is
quantised to its

own (free) timing

Music timing trails
behind game

event timing, but
is quantised to its

own pulse

Music event
trigger adds extra
time (waits) until it

is timed with
musical pulse

Sync

Game event
timing and music

timing is
synchronised

Lead

Game events
timing are synced

to the musical
pulse

Game event
trigger adds extra
time (waits) until it

is timed with
musical pulse

Musical pulse
conducts the

timing of game
events

Table 1: Overview of the three music timing approaches.

4. 4. Case study: Gluddle versus The Supervision

4.1. Gluddle's Nonlinear Music System

The aim of Gluddle's music system was to correspond with the hectic
moments in the pinball-like gameplay. The music system can be
regarded as an adaptive jukebox that semi-randomly triggers musical
blocks of music in time, which can be overruled by important actions
of the player and game events triggered by the game system. The
levels of Gluddle are designed to support short, rapid moments of
playfulness, hence the action-focused music system.

Gluddle features a 'totalitarian, synthetic polka-beat’ soundtrack and
combines the two techniques that were mentioned in section 2.2 for
nonlinear music systems. Horizontal resequencing is used for
alternating cells and triggering special event-cells in time. Vertical
reorchestration is used for the triggering of atmospheric 'long layers'
and the 'double time beat and hi-hats' that are triggered when the
velocity of the active game character crosses a certain threshold. To
increase the feeling of harmony between the game activity and music,
the sound effects of the majority of events are in the key of the music
(A flat).

The following overview is an illustration of the musical structure of
Gluddle, simulated in a Digital Audio Workstation (Tracktion 4). Below
the illustration, the functionality is described.

Figure 4: Visual mock-up of the music tracks in Gluddle's music
system. Listen to this mock-up example at reference [16]. To see this
system in action with gameplay, watch the video at reference [17].

1. Music
Musical cells of one measure are triggered in blocks of four cells (1-1,
1-2, 1-3, 1-4). The composition is either structured in blocks (in the
first levels) or randomly plays blocks that are compatible with one
another.

2. Double Beat
The double beat layer is triggered whenever the active Gluddle
reaches a velocity above a certain threshold, by for instance bumping
onto a special 'Bumper' object which gives the Gluddle a speed
impulse.

3. Music Event
Whenever a special event occurs, the music system always plays the
corresponding event music. To exemplify, hitting a Bullseye will play
the Bullseye music event, the freeze music event will sound when
being frozen, hitting a gravity-changing ball will play the gravity music
event and unleashing ‘GigaGluddle’ (a notable event) will play the
GigaGluddle music event.

4. Long Layer
The long layers have a duration of 7 to 12 seconds and are triggered
in random intervals to add a more continuous feel to the short music
cells of 1 measure. Gluddle does not feature sound objects related to
the Zone domain [14]. Instead, these long layers are added to give
Gluddle a more atmospheric character.

The game engine features a game metronome (nicknamed
'gametronome') that has been programmed to manage the timing and
triggering of music fragments. The music is constructed using several
arrays of 4 cells of 4 bars. One cell has a duration of 2.285 seconds
(105 beats-per-minute) so the metronome pulse of one beat is
0.57125 seconds (see Table 2). This game metronome pulse is used
for triggering several game events that will be described in 4.2.

Metronome - Circular Timer 1

2.285s

1 bar, 4 beats, 105 BPM

Metronome - Circular Timer 2

0.571s 1.143s 1.714s 2.285s

1 beat 1 beat 1 beat 1 beat

Table 2: Music pulse of Gluddle that is used for timing and quantizing
the game events (in seconds). Some game events are triggered on a
beat, while others are triggered per measure.

4.2. Game metronome usage

The game metronome is linked to several game events. A Bullseye
will start charging whenever a Gluddle enters its vicinity. Depending
on the design and difficulty of the level, the charging time and range
differs per Bullseye. The moment for a Bullseye to freeze a Gluddle by
a camera flash is the first beat of a music block. When the flash is
due, a final check is made to see if the Gluddle is still in range of the
Bullseye. If so, the Bullseye flashes and the Gluddle is frozen. If not,
the Bullseye does nothing and discharges.

Prelude Perilude Postlude

Before Event Time At Event Time After Event Time

Gluddle is in range
Bullseye starts to

shake

If Gluddle is still in
range:

Bullseye Flash

Gluddle has been
frozen

 Bullseye says
'Control', 'Freeze', etc.

Evaluation: Bullseye
says something cynical

('hahaha')

Prelude: Music
Tension sound fades in

Sync: Freeze Event
Music

Table 3: Prelude, Perilude and Postlude of a Bullseye in action.

Bullseyes animate and rotate to the beat of the music. Their verbal
exclamations, for instance when the player touches them or when
they freeze a Gluddle, are also synchronised to the beat. Gluddle that
are frozen by a Bullseye become grey and start a pulsating animation
on the beat. Other objects, such as the 'Tone Balls' make a sound on
the beat when touched by a Gluddle.

The music event behaviour differs per event. When a Gluddle
accidentally springs off the screen, the music system will try to
respond with a downward melody. As a music cell is 2.285 seconds, it
could take more than 2 seconds to play the music event belonging to
this action. During playtests we determined not to bother the player
with a past-time event that is not important anymore nor have the user

wait for 2 seconds for a new Gluddle to appear. In such cases, the
music event will only play if the music cell start delay is less than 1.5
seconds. There is one notable exception: the music event for hitting a
Bullseye is always played as it is an important positive reward for an
event that should not be omitted and go unnoticed. Prioritisation of
events proved a necessary ability of our real time scheduling system
in order to make its behaviour consistent with gameplay.

5. Results

In Gluddle, we combined the three approaches for timing nonlinear
music systems: some game events are timed immediately, some are
delayed slightly and synced to the musical pulse. We found that it was
not desirable to quantise player input to the music pulse, because the
gameplay required free-time interaction. However, by subtly
quantizing some important game events, we achieved a sense of
harmonisation that gently stimulates players to interact in the beat
(although this is not required), without Gluddle becoming a rhythm
game. In a similar way that is described by Burns [18] about the
rhythm game Planck (2009): “If we quantize too much, such as
delaying bass drum sounds to every whole note, the delay between
the player's action and the sound of the note becomes noticeably
long, and the “gamey” portion of the experience gets watered down.
The first part of the Planck idea, then, was to try and combine instant
visual feedback of game events (such as destroying an enemy) with
time-delayed reactions that make musical sense. Planck's attempt to
solve this problem centres around giving instant visual feedback of an
enemy being destroyed, but by keeping a 'destroyed' version of the
enemy in play until the next available note.”

Throughout the development and release of Gluddle we tested the
game with a number of playtesters using multiple play sessions
combined with observation and informal interviews. We noticed that
many playtesters made positive remarks about the game’s experience
and “flow-y” feel. When asked why, none of the playtesters could
accurately describe why the game felt like this, other than that it had
“something to do with the music”. The relationship between the timing
of sound, animations, music events and game events seemed to
prove too subtle to attract attention, but not too subtle to experience.
We have yet to make a comparative study to see to what extent the
game experience changes when the gametronome is disabled.

We made an important discovery that had a major impact on the
game mechanics and the balancing of (the difficulty of) the game. By
linking the reaction time of enemies to the musical pulse, the reactivity
of the Bullseye decreases as it literally waits for the musical pulse.
Since the Bullseye acts later than initially was intended, the game

became easier to play. The game therefore required more tweaking in
order to balance it. This is an important point to consider when
designing a game metronome that conducts the actions of enemies:
the music system becomes a fundamental piece of the game system
and is vital in balancing the game. Since we were the game's audio
designers as well as game designers, it was easy to combine these
tasks. If these two roles are fulfilled by different persons, it is very
important for the two to communicate and collaborate closely [19].

And lastly, we found that modern game technology can still be a
limiting factor, as sample accurate triggering asks for very precise co-
routines. Music files need to be triggered with very little latency,
otherwise noticeable gaps can be heard. As the framerate on mobile
devices usually is 60 frames per second or lower, the maximum
latency is about 16 milliseconds, and possibly more when the
framerate drops due to performance issues. Although Unity has added
sample-accurate triggering of music in Unity 4.0 with the introduction
of AudioSource.PlayScheduled(), a scripted change of music (in other
words: 'decision time') is often still based on the framerate. For correct
starting of music loops, it is usually necessary to give the game
engine some time to process the audio file in order to start it without
causing a CPU-spike, which could add extra time before the intended
response time.

make decision >>> preload sample >>> actual event >>>

framerate dependent

latency - 16 msec or
less

ideally 20 msec is this event still
relevant?

Table 4: the dilemma of synchronising music in a game engine which
requires preloading, which can conflict with synchronising the music to
real time events.

6. Conclusion and Discussion

In this paper, we discussed the possibilities of unifying the timing of
game events and music and distinguished three approaches to time
game music and game events: Trail, Sync and Lead. In case of the
latter, the game system may pick a moment for the instantiation of
game events based on a time that coincides with the musical timing.

So far, Lead seems to be only scarcely used in games compared to
Trail and Sync. Arlauskas describes the use of game-metronomes
[20]: “They have a lot more to offer game developers than simply
playing sounds to the beat of the music. What I really want to get
across is how the metronome event system can help unify the timing
of many elements in games, making them feel complimentary.”
According to Arlauskas, a complimentary benefit is that the unification
of game music and game events can lead to surprise through
unexpected synchronicity: “This sort of thing isn't immediately
apparent as being 'on the beat', but lots of nice, seemingly
coincidental (...) timings can happen.” The cases that use
metronomes to synchronise game events incorporate slow to medium
pacing. Future research could investigate how such a system
performs in games with fast pacing.

We have experimented with measuring the timing of the player’s
actions in relation to the music and see if the player's timing is
influenced by the music. Due to the latency caused by the framerate
in Unity, we found that making exact measurements is difficult at this
stage. Future research might include measuring the timing of the
player with higher precision.

In our study of linking the pulse of game events to the pulse of the
music, we found that it is possible to discern even more pulses during
gameplay, such as the pulse of player interactions with the game.
Distinguishing different pulses in gameplay may be a useful focal point
for future research as harmonizing co-existing pulses may lead to
more complementary designs.

It has been suggested that Italian scientist and philosopher Galileo
Galilei used music in order to measure time in his experiments [21].
Concluding our design study we can say that using musical timing as
a temporal grid for game events is a relevant and inspiring topic for
game creators. We propose designers not only focus on the spatial
composition of their artefacts, but also take notice of the temporal
relationships between music events and game events in order to
enhance and harmonize the gameplay experience.

7. References

1. Goles, N. (2010), Game Event Handling - Part 1. Retrieved 22nd
July, 2013, from:
https://nicolasgoles.com/blog/2010/12/game-event-handling-part-1/

2. Creative Heroes, Gluddle (2012). Retrieved 20th July, 2013 from:
http://gluddle.com

3. Also known as coroutines or invokes. For an overview of common
use of coroutines in Unity, please confer to:
http://docs.unity3d.com/Documentation/ScriptReference/Coroutine.ht
ml

4. Kayali, F. & Pichlmair, M. (2008). Playing Music, Playing Games -
Simulation Vs. Gameplay in Music-Based Games. In: Vienna Games
Conference 2008 'Future and Reality of Gaming' (FROG).

5. Huiberts, S. (2010), Captivating Sound: the Role of Audio for
Immersion in Games. Doctoral Thesis. University of Portsmouth and
Utrecht School of the Arts, Portsmouth.

6. Allen, J. F. (1983), Maintaining knowledge about temporal intervals.
Communications of the ACM. Volume 26 Issue 11, Nov. 1983, 832-
843.

7. Mayrand, A. (2008). Functions of the Score: Foreshadowing.
Retrieved 27th July, 2013 from the Getting the Score website:
http://gettingthescore.com/?p=78

8. Young, D. (2012), Adaptive Game Music: the evolution and future
of dynamic music systems in video games. Master's Thesis, Ohio
University.

9. Marks, A. (2009), Game Audio Development. Delmar.

10. van Nispen tot Pannerden, T., Huiberts, S., Donders, S., & Koch,
S. (2011). The nln-player: A system for nonlinear music in games.
Paper presented at Proceedings of the International Computer Music
Conference 2011, University of Huddersfield, England.

11. K. B. McAlpine, M. Bett, and J. Scanlan (2009). Approaches to
creating real-time adaptive music in interactive entertainment: A
musical perspective. In: The Proceedings of the AES 35th
International Conference. AES Royal Academy of Engineering.

12. Prendergast, R. (1977), Film Music, a neglected art. W. W.
Norton.

13. A wiki with examples of Mickey Mousing in video games can be
found here:
http://tvtropes.org/pmwiki/pmwiki.php/Main/MickeyMousing

14. Huiberts, S. & van Tol, R. (2008). IEZA: A Framework For Game
Audio. Gamasutra. Retrieved January 23rd, 2008, from
http://www.gamasutra.com/view/feature/3509/ieza_a_framework_for_
game_audio.php

15. Silk, P. (2010). iMUSE Demonstration 3 - Other Tricks. Retrieved
July 2nd, 2013, from http://www.youtube.com/watch?v=-XuClagw6IQ

16. http://downloads.gluddle.com/gluddle-musicdemo.mp4

17. http://downloads.gluddle.com/gluddle-musicexplanation.mp4

18. Burns, M. (2009). Planckogenesis, Part I: Quantizing Events.
Retrieved July 25th, 2013, from:
http://www.shadegrowngames.com/blog/2009/11/10/planckogenesis-
part-i-quantizing-events.html

19. Huiberts, S. (2011), Listen! - Improving the Cooperation between
Game Designers and Audio Designers. In: Think Design Play: The
fifth international conference of the Digital Research Association
(DIGRA). DiGRA/Utrecht School of the Arts. Retrieved from:
http://www.digra.org/wp-content/uploads/digital-
library/11313.06472.pdf

20. Arlauskas, B. (2012). A Metronome For Everyone. Retrieved
January 8th, 2012 from
http://gl33k.com/blog/2011/6/27/a-metronome-for-everyone.html

21. Drake, S. (1975), The Role of Music in Galileo's Experiments.
Scientific American, p. 98.

Games	

Beat Buddy (2013), Threaks.

Beat Sneak Bandit (2012). Simogo.

Gluddle (2012). Creative Heroes. iOS version.

Guitar Hero (2006). Harmonix Music Systems, RedOctane / MTV
Games.

Guitar Hero II (2006). Harmonix Music Systems, RedOctane /
Activision.

Monkey Island 2: Le Chuck's Revenge (1991), LucasArts.

Mushroom Men (2008), Red Fly Studio, Gamecock Media Group.

Patapon (2007), Pyramid Japan, Sony Computer Entertainment.

Planck (2009), ShadeGrownGames.

Rez (PlayStation 2, 2002). United Game Artists, SEGA.

Superhexagon (2012), Terry Cavanagh.

Super Mario Galaxy (2007), Nintendo

